پوسته ی دیویس-ویلانت عملگرهای فضای هیلبرت

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نمایش طیفی عملگرهای نرمال فضای هیلبرت حقیقی

قضیه نمایش طیفی عملگرهای نرمال فضای هیلبرت مختلط اهمیت فوق العاده ای در نظریه عملگرها دارد. با به کار بردن این قضیه می توان برخی از زیر فضای های غیر بدیهی پایای این فضاها تحت این عملگرها را مشخص نمود .در این پایان نامه ، ابتدا بر اساس مقالات اس.اچ کولکارنی و سوشوما آگراوال در سالهای 1994 و 1998 میلادی و با بکار بردن تکنیک هایی از جبرهای باناخ حقیقی ، قضیه نمایش طیفی برای عملگرهای نرمال فضاهای ه...

15 صفحه اول

چند نامساوی شعاع عددی برای عملگرهای فضای هیلبرت

در این پایان نامه سه نامساوی شعاع عددی برای عملگرهای فضای هیلبرت ارایه می کنیم.این نامساوی ها از نامساوی های شعاع طیفی برای عملگرهای فضای هیلبرت الهام گرفته شده اند به همین دلیل در فصل مجزایی به این نامساوی ها نیز پرداخته شده است. در فصل های بعدی با استفاده از ویژگی های شعاع عددی این نامساوی ها برای شعاع عددی ارایه و اثبات می شوند و در ادامه کاربردهایی از این نامساوی ها بیان می شود.

15 صفحه اول

بررسی توابعی از عملگرهای خود الحاقی در فضای هیلبرت

چکیده: نامساوی های عملگری روی فضای هیلبرت نقش مهمی را در نظریه عملگرها دارد که هدف اصلی این رساله نشان دادن نتایج اخیر درباره ای نامساوی ها، برای توابع پیوسته از عملگرهای خودالحاقی بر فضای هیلبرت مختلط است. ‎ در این پژوهش بعد از معرفی عملگرها، به بررسی برخی از این نامساوی ها پرداخته و ارتباط بین این نامساوی ها را مطرح کرده، و در نهایت کاربردی از عملگرها را در حالت ماتریس های متناهی البعد برای...

نامساوی های کلارکسون ناجا به جایی برای عملگرهای فضای هیلبرت

کلارکسون نشان داد که اگر 1?p<? و q= p/(p-1) ، آنگاه برای هر v, uدر l_p داریم: الف) اگر 1?p?2 1 ) ?(u+v)/2 ?_p^q+?(u-v)/2 ?_p^q?( ?1/2 ?u?_p^p+1/2 ?v?_p^p)?^?(q/p) 2 ) ?(u+v)/2 ?_p^p+?(u-v)/2 ?_p^p?1/2(?u?_p^p+?v?_p^p) ب) برای 2?p?? عکس نامساوی های فوق برقرارند. فرض کنید b,a دو عملگر از یک فضای هیلبرت باشند، برای p- نرمهای شتن ، مک کارتی نشان داد نامساوی های کلارکسون به صورت زیر برقرارند...

الحاق عملگرهای ترکیبی روی فضای هیلبرت تابع های تحلیلی

در این پایان نامه الحاق عملگرهای ترکیبی را بر فضای هیلبرت از توابع تحلیلی بر دیسک باز محاسبه می کنیم. به ویژه برای فضای هاردی، فضای دیریکله و فضای برگمن یک فرمول کلی به دست می آوریم. در تمامی موارد، الحاق عملگر ترکیبی به صورت اثر آن بر هسته ی تکثیری فضای مربوطه مشخص می شود.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023